
ENVIRONMENTS FOR SIMUL_R

(Graphical Input, Transputers, Discrete Simulation)

Ronald Ruzicka
Austria

ABSTRACT

 The conception of SIMUL_R has designed this language as an open system. Therefore several
kinds of environment tools have been developed for SIMUL_R.

 This paper presents a software and a hardware tool: the graphical input system SIMDRAW for
models, which supports the development of SIMUL_R-models using a block-oriented view of
dynamical systems, and the transputer system SIMUL_TR, which uses a PC as communication-part
and offers real parallel computing of SIMUL_R-submodels.

 At the end of this paper the discrete-process tool PROSIMUL_R is presented, which gives the
possibility of working with discrete models (e.g. using continuous models as submodels) in SIMUL_R
(there exists a transputer-version of PROSIMUL_R, too).

INTRODUCTION

 This paper continues the last years paper (1) about SIMUL_R (2), which presents SIMUL_R as a
new continuous-systems-simulation language.

 SIMUL_R is a compiler-oriented language (with C (3) as host-language) with special features for
- modeling (several models in one program, automatic solution of algebraic loops, macro-library),
- analyzing (loop- and recursive programming within the runtime-interpreter, special commands for
table-function and data-file computations, computation of models in sequence or in parallel),

- documentation of results (3D-plots, parameter-lines, niveau-lines, special plot commands for the
solution of partial differential equations, moving pictures).

 Though the SIMUL_R-sytem contains several features, it is necessary to develop environment
tools for a better support of users' wishes. The first shown tools aim to improve the acceptance of
SIMUL_R by two user-groups (amoung others): first the engineer and control-designer and secondly
the big group of people, whose models take much time to be computed.

SIMGRAPH - A GRAFICAL DEVELOPMENT SYSTEM

 The grafic-system SIMGRAPH is a block-oriented surface for the equation-oriented SIMUL_R-
language. It has been implemented under GEM and is fully menu-driven.

 The user draws a model-picture by dragging predefined operational-blocks into his model window.
The blocks can be selected and linked together by lines. Each line - leading from one port of a block to
one port of another (or the same) destination block - can be named. All lines can be accessed at
simulation time by their names as normal model-variables (see Figure 1 for the SIMDRAW-desktop).

Fig. 1 The SIMDRAW-desktop.

Blocks

 There are three kinds of blocks: standard, functions and transfer-functions.

 Standard blocks are sumation, subtraction, multiplication, division, integration, comparison; a
switch-block (connects one of two input-values to the output-port, depending on a logical input-value),
a logical negation.

 A constant-block delivers constant-values. The extern-object gives the possibility to access extern
variables; the intern-block is a kind of watch-point for specifying the output-ports in an open system.

 Two blocks are known from analog-computers: the track-store and the hold. So easily analog- or
hybrid-computer-models can be imitated.

 A special one is the BLOCK-block. It is something like a grafical macro and facilitates the
structuring of models. With a double-click of the mouse-button onto a block-icon special values of
blocks can be set: constant numbers to constant-blocks, external names to extern.
 A double-click onto a BLOCK-object opens another niveau of your model - you somehow look one
step deeper into it. Here you may define a sub-part of your model (using extern- and intern-blocks).
The extern-blocks and intern-blocks here are the input- and output-ports of the BLOCK one niveau
above!

 Deeper niveaus are whole models themselves; and therefore it is easy to test your model by first
testing your submodels.

 Function blocks offer a lot of useful functions: harmonic oscilator, positive- or negative-part of a
value, ramp- and step-functions, pulse-functions, random-values.

 The last category are the transfer function blocks. That are blocks especially designed for
control-engineers, which symbolize transfer functions (lead-leg, real-pol, complex-pol).

The SIMDRAW-desktop

 The SIMDRAW-desktop only shows a part of your model (it might be 10000 times larger!). You can
move your watch-window across the model, where you want. Naturally there is a Show all-mode,
where the whole model can be seen in the look-window (see Figure 2).

Fig. 2 The SIMDRAW-Show All-mode.

 SIMDRAW contains many tools for the preparation of models: deleting, moving and copying of
parts of the picture; including of other pictures; saving, reading and plotting.

The SIMDRAW-translator

 Nevertheless we not only want to draw but to simulate!

 SIMUL_R is a compiled language, because compiled languages are much faster than interpreted
ones. Therefore it fits into system-philosophy to translate and compile the picture: it is first inspected
(error-messages are displayed, if something is not built up correctly, and the wrong block is inverted)
and then translated into a readable SIMUL_R-program.

 From this point on it can be automatically compiled to a executable program or be changed by
hand for special purposes.

 Many SIMDRAW-blocks (such as trackstore or the transfer-function-blocks) use the SIMUL_R-
macro-library.

Example:

Figure 1 and 2 show a sine-cosine-system, Figure 3 contains the file, generated from this pictures by
SIMDRAW.

 #include'SIMCOMAC.DEF'
 COSSIN {
 CONSTANT tend=1;
 CONSTANT dx0=1;
 CONSTANT omega=1;
 CONSTANT x0=0;
 DYNAMIC {

 DERIVATIVE {
 dx=INTEG(hdx,dx0); x=INTEG(hx,x0);
 gdx=x*omega;
 hx=dx*omega;
 hdx=-gdx;

 }

 TERMINATE t>=tend;

 }

}

Fig. 3 Sine-cosine program.

SIMUL_TR - the transputer version

Historical aspects

 The PC is a very suitable and worth-the-money tool for simulation. In comparison to many more
expensive (and sometimes faster) computer-systems it has many advantages considering grafical
input and output, man-machine-interface and spreading all over the world.

 Nevertheless simulation often reaches the bounds of the PC because of memory- and time-reasons.

 A few years ago new processors have been developed - the transputers (4) -, which on one hand are
fast as standalone-processors and can easily communicate with one another on the other hand.
Nowadays several cards are available, which subdue the interface PC to transputer.

 Therefore it seems to be clear, that a simulation-language for transputers has to be developed or a
transputer-version of an existing language must be implemented.

Development-problems of a transputer-language

 Before such a project (the development of a computer simulation language on transputers) can
start, some decisions have to be made:

- should a new language be written?

- if an old one is used, which parts should work on the PC, which parts on the transputer?

- should a compiled or an interpreted language be developed?

- is it necessary for the user to know that he works on a transputer (or might he use the system as a
black box)?

- who should implement such a system: a simulant or a transputer-expert?

 Answering the first question, it must be said, that it costs too much time to create a new system.
We will take SIMUL_R, because this language posseses many features for parallel-computing even in
its PC-version.

 Therefore the third question can be answered easily: because of philosophy reasons a compiled
version is used, and why should a fast processor be slowed down by interpretation?

 The second question can be answered by saying, that all things, which have to deal with input and
output, should be done by the PC and the computation-work should be performed by the transputer.

 The question, whether the user should know, how its system works, can be decided by a
philosophical view (information hiding - yes or no); but the experiences in this direction have to be
considered, too (they have shown, that total ignorance on the system reduces effectivity).

 SIMUL_TR has been developed by both sides of experts: simulants and transputer-engineers.

The SIMUL_TR-system

 First the installation of the system takes place (the transputer-system configuration is specified or
automatically detached) .

 It has been decided, that from now, the user knows his system parts (different transputers or
different processes on one transputer) and can refer to them as process-numbers. He can decide which
submodels are computed in parallel on which processes. The SIMUL_R-mstart-command (which
specifies the models to be computed in parallel, as known from the PC) contains this process-numbers
as extensions.

Example:

 mstart model_A:0, model_B:1, model_C:0;

This command decides model_A and model_C to be run on process 0 and model_C on process 1.

 The user is not involved in all the problems and methods, which arise and are necessary with the
link-communication of the transputers.

 He only works at his PC, with its SIMUL_TR-surface as known from the SIMUL_R-PC-version -
and is pleaseed about the velocity of computation.

Differences between SIMUL_R-PC and SIMUL_TR

 There are some differences between PC-SIMUL_R and SIMUL_TR.

 As decided above SIMUL_TR is as well compiled as the PC-version, but: not the PC-part has to be
recompiled, but the transputer-program.

 This offers a lot of advantages:

- only the model-part is compiled and linked with the numeric-library -> translation-time decreases,

- the user need not leave the runtime-environment for recompilation -> this is more comfortable

- the SYS-command enables the user to edit his program from the runtime-environment

 Recompilation is done by using the new COMPILE-command:

Example:

 COMPILE 'test -a';

 This command compiles the SIMUL_R-program test.sim with the flag for automatic solution of
algebraic loops. It generates the C-files for the transputer and a system-configuration file for the PC.
The transputer compiles and links the C-file and starts the simulation-program.

 The system-configuration file is read by the SIMUL_TR-PC-part and the internal structure is
built up for the new system.

 The simulation-program on the transputer waits for a start-command. If it receives such a
message, necessary system-parameters and variable-values will be read and computation is started.
During computation prepared-variables are sent to the PC. At the end of the simulation-run model-
variables are written back to the PC.

 That means, that variable-changes between two simulation-runs are computed locally at the PC
and are reported to the transputer at the start of a simulation run.

 On the other hand prepared data is sampled and displayed on the PC (and its disk).

 There is one situation, when recompilation of the SIMUL_TR-PC-part is necessary: when the
feature of SIMUL_R, that new commands can be added to the system, is used (but this in general not
often takes place).

SIMUL_TR - not only transputers

 The conception of SIMUL_TR makes it possible to develop parallel simulation systems with the
powerful runtime-features of SIMUL_R on any other parallel computer as well.

 Nevertheless: the combination transputer and PC is a modern and promising way of simulation.

PROSIMUL_R - A DISCRETE ENVIRONMENT

The idea of PROSIMUL_R

 The PROSIMUL_R-system is an extension to the SIMUL_R-system. That means, that it totally
fits into the SIMUL_R(-continuous-systems) system. One of a SIMUL_R-program's submodel is a
discrete-model. It uses the same syntax and has a similar body as the continuous models, but
naturally other commands are available.

 A discrete-model can start and stop continuous models. PROSIMUL_R offers the well-known
discrete-commands, like create, wait and delay, but has a compareably small amount of new
commands, because a lot of commands are implemented as macros (using the powerfull SIMUL_R-
macro-meta-language).

 The discrete-model, also called PROCESS-model may describe the course of production in a
factory as well as the time- and causal-dependency of a set of continuous models.

Entities

 The course of the discrete model is determined by the way so called entities path through it. Such
an entity can be seen as work piece or as well as one of the program counters in processes using
independendly the same program.

 Entities are generated and/or started at special points of the PROCESS-submodel called
CREATE-commands. At all those points the course of computation starts simultaneously at the
begin of a simulation run.

Stations

 A SIMUL_R-PROCESS-model is devided into STATIONs, which denote each a logical unit in the
course of the paths of the entities (e.g. a station may describe the loading-, working- and unloading-
phase of a machine in a factory, a conveyor belt, a transporter).

 Each station can be activated or deactivated. Entities in a deactivated station are frozen (their
time-delays are frozen, too).

Movement of entities

 If an entity reaches the end of a station, it continues its path in the next station (as written in the
program). If this is the last station, it is released. There are two other ways of moving an entity to
another station: by a MOVE- or a CMOVE-command.

 The first one moves the entity to a station by using a specified station as transporter (the entity
leaves the current station, goes through the transporter-station - e.g. being delayed by a DELAY-
command or waiting for a continous system to be finished - and then continues at the destination
station). Only one entity at a time can be moved by the transporter and so has the ability of
controlling the transporters movement.

 The CMOVE-commands move the entity to other stations by using another station as conveyor. A
conveyor-station is not controlled by a special entity, but moves continuously. Many entities can be
moved in this way simultaneously (e.g. belt or bucket conveyors). The movement and the relation
between conveyor and entities are specified by the conveyor's velocity and length and the entitities'

length.

 There are many macros, which build up both movement systems.

Seizing, queueing, freeing

 In general, stations (e.g. machines, transporters, conveyors) have to be seezed before they can be
used. That means that the entity tries to get the right to use a station, because many stations only
have limited capacities. So it may happen, that some entities compete for a station and there is not
the appropriate amount of free capacities (entities may need different amounts of capacities).

 Therefore the entity has to queue. That means in general that it is moved to another station,
where it stays until the needed number of free capacities is available. If there is enough capacity for
more than one waiting entity, that one with the highest priority will get the station first (FIFO-rule
with equal priorities).

 A seezed station has to be freed, when the entity leaves the station.
 An entity may seize several stations (e.g. a machine and a tranporter, which moves it to this
machine), but only paths through the commands of one station at one time. Therefore many stations
will be more seized, than really used (that is the reason, why each station has one attribute for the
number of its units, which are seezed, and another for the number of units, which are really active -
that means used).

 Seizing and freeing is done by macro-commands.

Attributes of entities

 Each entity has a lot of attributes (type, priority, locality, destination during movements, length
during conveying), which are stored in SIMUL_R-variables (each entity is automatically assigned a
number, which can be used as index into the arrays of the attributes). Nevertheless these indices
need not be used, because special macros make it possible to directly access the attributes of those
entities having reached a special position.

Conveyors

 Conveyors and entities have a special length, conveyors a velocity (constant-"time-conveyors", not
constant-"event-conveyors"), too. A conveyor is built up from one or more stations, which each denote
a part of it. Seen from a more abstract view these stations (e.g. belts) lead from one station (e.g.
machine) to another.

 If an entity enters a conveyor it is put on it (its back at the beginning of the conveyor). When its
front reaches the end of the conveyor-part and the station there is the destination, it is removed from
the conveyor; so it has only been moved on the conveyor for a length of
length of conveyor - length of entity.

 The time it needed for this length is used as conveying-time by the conveyor-macros.

 If the entity has not reached the destination station after the first conveyor-part it has to travel on
using the next conveyor-part station. But it takes some time to get from one conveyor-part to another
(that time, from the first touch of the entity's front on the new conveyor to the last touch of the back
of the entity on the old conveyor). This process is modeled by the CMOVE_xDELAY-commands and -
macros.

 Conveyors can be built up by using special macros.

The PROSIMUL_R-program

 The PROSIMUL_R-sourcetext consists of an arbitrary number of continuous models and one
process-model with the command-sequence shown in Figure 4.

 PROCESS model_name, n {

 ... initial

 DYNAMIC {

 STATION stat_name {
 ...
 } ;

 ...

 STATION stat_name {
 ...
 } ;

 }

 ... terminal

 }

Fig. 4 The discrete-model-syntax.

Example:

The example in Figure 6 describes roughly a little factory (Figure 5) with five stations: a generation-
station for entities, two machines (computed in continuous models) and two stations for the 2-part
conveyor. The entity is created and then processes at one of the two machines depending on its type
(system attribute #SI(0)).

Fig. 5 A little factory.

machine_1 {
 ...
}

machine_2 {
 ...
}

PROCESS factory, 30 {

 CONSTANT len1=5, len2=7, vel=1;
 CONSTANT tend=100, ent_count=50;
 CONSTANT ent_length=0.2;

 STATIONS start, station_1, station_2,
 belt1, belt2;

 DYNAMIC {

STATION start {
 CREATE_DIST
 unif_dist(0,1), "creation time"
discr_dist(0.5), "type"
 ent_count; "number of entities
 to be created"
 #SF(3)=ent_length; "length of entity"
 #dest = "destination"
 SWI(#SI(0),station_1,station_2);
 #SEIZE ((#dest))
 #TSEIZE (belt1,len1,vel)
 #CMOVE ((#dest),belt1,len1,vel)
} ;

#TCONVEYOR (belt1,station_1,len1,vel,
 belt2,station_2,len2,vel)

STATION station_1 {
 start 0;
 #FREE (station_1)
 LEAVE; "entity leaves system"
} ;

STATION station_2 {
 start 1;
 #FREE (station_2)
 LEAVE; "entity leaves system"
} ;

TERMINATE t>=tend;

 }
}

Fig. 6 PROSIMUL_R-model of a factory.

Special features

 SIMUL_R gives the opportunity of optimizing a system and of saving the whole system-state. If
you consider a special system (maybe the model of a factory, with continuous models for machines),
some parameters (velocities, distribution-rates of jobs to different machines) can be optimized under
special conditions (necessary production-output, cheapest configuration, ...) and stored. So a

parameter-library is built up.

 If such conditions occur later on, the system-parameters can be loaded and the system can be used
immediately with the optimal parameters.

 As conveyors can be modeled with not-constant velocities, starting processes of systems can be
simulated.

 There are several computation features for statistical analysis (minimum, maximum, mean,
variance, histograms).

CONCLUSIONS

 The grafic-environment SIMDRAW is an easy-to-use input-tool for SIMUL_R-models. It supports
program-development by its feature of making submodels. In the future many other block-primitives
will be available.

 SIMUL_TR - the transputer version of SIMUL_R - opens up a new method of simulation: fast
computation and parallel simulation with a PC as the input-output-medium.

 In the near future another facility of parallel-computing will be ready to use: not only different
models in parallel, but also one model computed in parallel (with automatic partitioning of the
parallel parts) and the use of parallel numeric algorithms.

 The discrete-language PROSIMUL_R is a consistent extension to the SIMUL_R-system, which can
use all the features of SIMUL_R. In connection with the transputer-version SIMUL_TR an
animation-tool has been developed that delivers a combination of 3D-movements, sprites and reality-
photographs.

REFERENCES

1 R. Ruzicka:
SIMUL_R - A Simulation Language with Special Features for Model-Switching and
Analysis, Proc. of the ESMulticonference 1988, Nice, 429 pages

2 Dr.Ruzicka-Simulationstechnik:
 SIMUL_R - A user's guide.
Vienna, 1988

3 Kernighan, Ritchie:
The C Programming Language
Prentice-Hall, 1977

4 Inmos:
Transputer reference manual
Prentice-Hall, 1988

