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ABSTRACT 
 
     SIMUL_R is a compiler directed simulation language for continous systems. It provides special 
features for the use of different models for the same system in one program, discrete-events, table-
functions, automatic solution of systems with algebraic loops. The runtime-interpreter of SIMUL_R 
offers several meta-commands, as 'while', 'until', 'for', 'if', macros and subroutines (also recursive). 
SIMUL_R includes a huge grafic-library (e.g. 3D- and moving graphics). BAPS is a preprocessor for 
SIMUL_R, which offers the possibility of using bondgraph-models; CAPS provides compartment-
models. 
GOMA is an optimization-preprocessor for ACSL. 
 
 
INTRODUCTION 
 
     Nearly each system, which is to be analyzed now-a-days, has a very complex structure. Therefore 
often several models have to be tried and compared afterwards. Comparison of models must in most 
cases be done by putting one plot over the other and one curve over another. Why not using different 
models in one simulation program? 
 
     Very often there occure models of implicit structure and must be solved by hand or by using 
special statements of simulation languages. Why not simply writing the implicit system as it is 
articulated and letting solve it by a simulation language? 
 
     The upper two arguments are reason enough to construct a new simulation language. 
Nevertheless it should be compatible with former languages - so the well known CSSL-standard (as 
for example used in ACSL) can be used. 
 
     A third reason for the development of a new language is the manifold of todays problems. Many 
different sciences use simulation as important tool for the daily work. Therefore a modern simulation 
language should be open. That means that the user has the possibility of adding new commands to 
the language. 
 
     In SIMUL_R this can be done by simply writing a subroutine, which uses given functions for 
decoding an input line. These subroutine can be defined by using the programming-language C 
(which is the 'host'-language for SIMUL_R, as is FORTRAN for ACSL), or as well FORTRAN, or 
other high-level languages. 
 
 
THE SIMUL_R-COMPILER 
 
     The SIMUL_R-Compiler (let us simply call it 'SIMCO') compiles the source-text of a simulation-
program into a C-program, which is linked together with the SIMUL_R runtime-library. 
 
     As told by the CSSL-standard such a program is divided into a part of statements, which should 
be executed before one simulation-run, the system-defining equations and the statements, which 
have to be executed after the simulation-run. 
 



     Differential equations - as matrices and vectors (up to 16 dimensions!), too - can be defined as well 
as table-functions (with constant or linear interpolation between the breakpoints) or discrete-events. 
Discrete events can be scheduled once, periodic by time, or when a special case occurs (they also can 
be scheduled by time during run-time in the runtime-interpreter). 
 
Algebraic Loops 
 
     As described above SIMUL_R provides the automatic solution of implicit systems. SIMCO 
transforms the system with algebraic loops into the equivalent zero-search problem. For example 
take the equation 
 
     x = x*x + t, 
 
which you want to be solved over x, taking t from (1²t²2). You simply write the equation as written 
above, invoke SIMCO by using the special flag '-a' and start the simulation over (1;2).  
Different Models In One Program 
 
     A SIMUL_R-sourcetext may contain more than one model; for example a nonlinear and a linear 
model for the same system (besides: entering the models you can use free format, no more search for 
the 7th column ...). During runtime you can set the model you just want to be simulated by simple 
commands (and only this model will be computed). By using the interpreter-loop-commands (called 
'meta-commands') simulation-runs with high-level model-switching and -scheduling can be 
performed. 
 
     Within a SIMUL_R-sourcetext also meta-commands (as 'while', 'for', 'if', 'include', macros and 
meta-variables) may be used. These make it much easier to create complex, but easy-to-read source-
codes. 
 
 
THE SIMUL_R-RUNTIME-INTERPRETER 
 
     As it is known the usefullness of a compiler-directed simulation-language mainly depends on the 
computing-features of its runtime-interpreter. The SIMUL_R-runtime-interpreter provides all 
normally used commands: start and restart (continue) of simulation-runs (continue without loss of 
plot-data!), assignment of algebraic expressions (including functions like exp, log, sin, ...) to variables 
and display of algebraic expressions. 
 
Loop-Commands 
 
     The interpreter also offers the same meta-commands as the compiler. So loops (while, until, for, 
loop) and dependent computation (if, ifnot), macros and including of files (which can be seen as the 
calling of a subroutine or the invocation of a batch-file) are possible. 
 
     Some usefull commands for the treating of table-functions are supported: simple assignment of 
one table to another and the so called 'assign'-command. With 'assign' a table can be linked to a 
variable. During the following simulations the values of the so defined variable (seen over time t) are 
assigned to the table, better to say: they are recorded. So curves can be saved and used in other 
models. 
Together with the meta-commands these table-function-commands build up a strong tool for complex 
examinations on dynamic models as e.g. integral-equations, delay-problems, optimization of control-
functions. 
 
Optimization, Zero-Search 
 
     SIMUL_R is an open system. That means that the user can define his own special commands for 



the runtime-interpreter as subroutine of a highlevel programming-language (e.g. C or FORTRAN). 
Some examples of such commands are part of the SIMUL_R system: parameter-optimization (with 
parameter-constraints), zero-search, steady-state-analysis, computation of the Jacobian-matrix, 
computation of eigenvalues and eigenvectors. 
 
     A simple example can show how these features work together: take a nonlinear model and a linear 
model for the same dynamical system as the two models of a SIMUL_R-program. Start with the 
simulation of the nonlinear model until a special point of time; then invoke the computation of the 
Jacobian (which writes the matrix-elements to the matrix used in the linear model) and then switch 
to the linear model. Here you can go on and compare the found solution of your linear-model with the 
solution of the nonlinear model (which has been recorded in a table-function). 
 
SIMUL_R-Graphics 
 
     The graphics-library not only provides 'normal' plots (as known from other simulation languages) 
with axes (with free selectable scales), curve-marking, etc., but also the possibility of drawing many 
plots in one picture (for comparisson purposes). Three dimensional plots (e.g. for documentation of 
different curves during parameter-variation) are supported as well as 'cross'-plots. 
 
     'Cross'-plots are drawings, in which not the value of one variable is plotted over the value of 
another (for example over time) but where the values of several variables are shown simultaneously 
and connected with lines. Think for example of the discretization of a partial differential equation for 
the wave-motion of a cord. Such a model contains variables, which at definite points show the 
distance of the cord from a zero-line. By plotting and connecting the so computed values you can get 
an impression of the movement of the cord. 
 
     This impression can be improved by another feature of the SIMUL_R-graphics-library: it is not 
necessary to draw all curves (which represent the position of the cord in our example) in one plot, but 
you can draw them one behind the other - a moving picture. This moving-feature can be used to show 
the development of the solution of an integral-equation (found with an iterative method using the 
runtime-interpreter-features of SIMUL_R), too. 
 
     There is a third way of plotting moving-pictures: simple curves can be drawn as moving point-
tangent-pairs. 
 
A Thread Pendulum 
 
     This example shows model-switching in SIMUL_R in the runtime-interpreter. A thread pendulum 
can be seen as a two-model-system: one model for the phase of the free fall and another for the phase, 
when the thread has its full length (a circular phase). Fig. 1 shows the SIMUL_R-program, Fig. 2 the 
runtime-interpreter commands and Fig. 3 the plot y over x. 
 
 
DO { 
 
 "ATAN is necessary to get the right sign"  
float ATAN(a) 
 double a; { 
   if (x==0) 
      if (y>=0) return((float)(PI/2)); 
      else return((float)(0-PI/2)); 
   if (x<0) 
      if (y<0) return((float)(atan(a)-PI)); 
      else return((float)(0-atan(0-a)-PI)); 
   else 



      if (y>=0) return((float)(atan(a))); 
      else return((float)(0-atan(0-a))); } 
 
};   "DO" 
 
 
thread_circular { 
  
  CONSTANT m=1, g=9.81, tend=3, r=1; 
  CONSTANT phi0=0; 
  CONSTANT v0phi = -3, Res=0.4;                          "small resistance" 
  EXTERN sin(1), cos(1); 
 
  SE1 = -m*g; 
 
DYNAMIC { 
 
DERIVATIVE { 
  phi = INTEG(vphi,phi0); 
  x = r*cos(phi); 
  vx = r*cos(phi)*vphi; 
  y = r*sin(phi); 
  vy = r*sin(phi)*vphi; 
  L1L2 = cos(phi); 
  Resistance = -vphi*Res; 
  vphi = INTEG((SE1*L1L2+Resistance)/m,v0phi); 
 
   }   "DERIVATIVE" 
 
  TERMINATE (t>tend || m*g*sin(phi)>m*r*vphi*vphi); 
   }   "DYNAMIC" 
 
  vphi_alt=vphi; 
   }   "thread_circular" 
 
 
thread_fall { 
  
        "constants defined in another model" 
  CONSTANT EXTERN m, EXTERN g, EXTERN tend, EXTERN r; 
  CONSTANT EXTERN phi0; 
        "initial values" 
  CONSTANT x0 = 1, y0 = 0, p0y = 0; 
  CONSTANT PI_2 = 1.570796327; 
  LOGICAL logic; 
  EXTERN ATAN(1); 
 
  SE1 = -m*g; 
  vx = 0; 
  vphi_alt=(vy/x0-y0*vx/x0/x0)/(1+y0*y0/x0/x0); 
 
 
DYNAMIC { 
 
DERIVATIVE { 



  phi = SWI(logic,ATAN(y/x), 
                  SWI(y<0,(0-(PI_2)),PI_2)); 
  vphi = SWI(logic, 
      (vy/x-y*vx/x/x)/(1+y*y/x/x),vphi_alt); 
  x = INTEG(vx,x0); 
  y = INTEG(vy,y0); 
  vy = INTEG(SE1/m,v0y); 
  logic = (x!=0); 
 
   }   "DERIVATIVE" 
 
  vphi_alt=vphi; 
  TERMINATE (t>tend || x*x+y*y>r*r); 
   }   "DYNAMIC" 
 
   }   "thread_fall" 
 
Fig. 1  SIMUL_R-program for thread pendulum 
 
 
akt_mod=thread_circular; 
start; 
#while t<tend # cont thread_fall;  
                cont thread_circular;  
#end 
 
Fig. 2  Runtime-interpreter commands 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3  Plot y over x 
 
 
BAPS - A BONDGRAPH PREPROCESSOR 
 
     Often systems are given not in equations, but implicit in diagrams - as in wiring diagrams or 
similar drawings in mechanics or thermodynamics. In many cases it is not easy and time-expensive 
to deduce the equivalent equations from such a diagram for using them within a simulation-
environment. Therefore preprocessors has been created to transform these diagrams into a readable 
form for simulation languages. 



 
     BAPS (Bondgraph Analysis and Program Synthesis) is a preprocessor for bondgraphs, which is an 
universell describing method for electrical, mechanical, thermodynamical and interdisciplinere 
systems. It translates a bondgraph, which is defined by writing the Elements and the junctions in an 
easy-to-learn language, into a SIMUL_R-program. Nevertheless it can be translated into ACSL or 
any other simulation language as well, because BAPS is implemented in a very general way. 
 
     The BAPS-System consists of two parts: the 'compiler' and the 'linker'. The compiler reads and 
analyzes the BAPS-sourcetext and the bondgraph and then generates an intermediate-code. This 
code is translated into a simulation language by the linker. So only the linker must be changed, if 
another 'host'-simulation-language is to be used (until now there exist linkers for SIMUL_R, ACSL 
and HYBSYS, which is a block-oriented language for hybrid simulation). 
 
     BAPS not only deals with linear bond-graphs (as defined in (1)), but also with nonlinear 
bondgraphs. There are several ways of defining nonlinearities: 
 
     Elementconstants (as resistance or capacity) can be any algebraic expression; for each element a 
nonlinear equation may be defined; events can be defined and used as switches in algebraic 
expressions. These events can also be used to build up tdj-junctions (that are junctions, which change 
during the course of time - so the topology of a bondgraph can be changed during simulation!) or to 
generate discontinous states. Table functions can be used, too. 
 
     BAPS inspects the bondgraph (including the nonlinearities!) on algebraic loops and assigns their 
causalities to the bondgraphs (algorithms in (2)). It outputs, if wanted, a list of elements and edges 
with the assigned causalities. 
 
     BAPS supports model-development by giving the possibility of using several models (or 
bondgraphs) within one BAPS-sourcetext. Not fully specified models can also be used. Within an 
UNDEFINED model (that is the keyword of BAPS for such models) only input and output variables 
must be specified; dependencies can be specified in a very abstract manner by saying simply: 
variables a, ..., b depend on x, ..., y). 
 
     Within a BAPS-sourcetext the above introduced 'meta-commands' can be used, too. These for 
example can be used in asymptotic bondgraph-models. These are models, which approximate 
asymptotically a real-system (e.g. discretizations, solving of partial differential equations by line-
methods). 
 
A Simple Circuit 
 
     Here is an example for bondgraph-modelling with BAPS: a simple electrical circuit with a source, 
a resistor and a capacity. Fig. 4 shows the wiring diagram, Fig. 5 the equivalent bondgraph and Fig. 
6 the BAPS-Sourcetext. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4  RC-Circuit 
 



 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5  Bondgraph-description 
 
 
RC_circuit: 
 
     "Bondgraph-description:" 
 
SE 1; 1 1 2 3; R 2; C 3;    { 
 
     "Constant-definition" 
 
CONSTANT TEND=0.05, f = 50*2*3.1416, 
         ampl=220; 
EXTERN SIN(1), T; 
 
TERMINATE T>=TEND; 
 
     "Elementconstants and -equations" 
 
SE 1: SE1 = ampl*sin(T*f); 
R  2: R2  = 100; 
C  3: C3  = 0.0001;  
      q03 = 0;   "Initial value for state" 
} 
 
Fig. 6  BAPS-sourcetext 
 
 
CAPS - A COMPARTEMENT-PREPROCESSOR 
 
     CAPS (Compartment Analysis and Program Synthesis, (3)) is a program, which translates a 
compartment-model-description into the source-text of a simulation language. It supports nonlinear 
compartement-models, optimization and statistical problems. 
 
     Compartments are used to describe biological systems, chemical processes, pharmakokinetics and 
-dynamics, epidemic spread outs as well as growing of populations. 
 
     A spezial feature of CAPS is the opportunity of converting compartment-models into Volterra-
systems (these are systems with differential equations with linear right sides, if the logarithmic 
derivation-operator d(ln)/dt is used). 
 
     A CAPS-sourceprogram consists of definitions of constants, tables, compartements, nonlinear-
blocks, infusion (idealized adding of substances at a point of time, which leads to discontinouities) 



and rates (these describe the flow between compartements). CAPS also supports macros and inluding 
of files. 
 
A hydrophobia-spreading-out model for foxes 
 
     This model (4) can be seen as network of knods, which symbolize regions in a country. Such a knod 
can be described in a diagram as in Fig. 7 (x is the number of healthy, y of hydrophobia-ill and z the 
number of died foxes). Fig. 8 shows a macro for a knod in CAPS-syntax. The increase of the number 
of healthy foxes can be decribed as continouing during the year, or once in spring by defining 'inc1' 
respectively 'inc2' at the command line of CAPS. 
 
 
 
     
 
                          
     
     
 
 
 
 
 
 
 
 
 
 
Fig 7.  A compartment-system for ill foxes 
 
 
 
MACRO knod(x,y,xicw,yicw); 
CONST x_ic = xicw, 
      y_ic = yicw; 
COMP x(x_ic), y(y_ic);  "dead foxes are not interesting" 
BLOCK inf_x; 
inf_x=beta*x*y; 
RATE x_out, y_in, y_out; 
x_out = x, inf_x, 1; 
y_in  = inf_x, y, 1; 
y_out = y, EMPTY, gamma; 
     "increase of population" 
IF inc1 INSERT <inc1.cap>; 
IF inc2 INSERT <inc2.cap>; 
END; 
 
Fig. 8  CAPS-sourcetext 
 
 
GOMA - AN OPTIMIZING PREPROCESSOR FOR ACSL 
 
     In opposite to SIMUL_R ACSL includes no optimizing features. Therefore a preprocessor has been 
developed at the TU Vienna for solving parameter- and control-function-optimization problems. 
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     GOMA (Generation of Optimizing Models in ACSL (5,6)) reads the optimizing parameters 
specified by the user and the ACSL-model, adds statements to the model (such as discrete-sections, if 
control-optimization has been chosen) and generates a new simulation main-program. 
 
     The user input contains information on the term to be optimized, number of linear constraints, 
nonlinear constraints, ending-conditions (for example the difference between a state-variable and its 
aimed end-value). If control-functions shall be optimized the number of control-functions, the number 
of breakpoints of the parametrization, the type of the control (constant, linear, cubic-splines, 
bangbang and user-defined functions); if parameter-optimization has been chosen then the 
parameters to be optimized must be listed by the user. 
All this information can be read from a file or interactive. 
 
     GOMA generates an optimizing environment for control-functions, which computes these 
functions as piece-wise constant or linear functions or as cubic splines with equidistant breakpoints; 
the function values at these points are optimized. If bangbang or user-defined functions have been 
chosen, the user supports the functions over intervals and tells in which interval which function must 
be used; here the length of each interval is optimized. 
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